We Use cookies

to enhance your experience with analytics, personalization, and security.

Satellites & Image recognition

Written by

Published on

December 11, 2020

Product
Satellite terrain view

Image recognition is a set of methods used to detect and analyze images with the purpose of processing them faster and more accurately than what humans can do manually.

It is a technology that is able to identify various elements within an image such as (places, people, objects, etc), generate conclusions, and make decisions according to a predetermined set of rules.

One of the methods used to perform image recognition is machine learning (ML), an approach that involves identifying and extracting an image’s key features and running them through an ML model.

First, the data is trained – compiling a collection of images into categories, then its features are extracted – pinpointing the unique features of each image, and finally, a machine learning model is created – an algorithm that is able to separate these features into their distinct categories.

Using image recognition makes it possible for systems and platforms to automate tedious man-done processes, consequently improving their productivity.

Once an image recognition model is able to recognize an element in an image, it can be programmed to make conclusions and perform actions based upon it. These days ML in image recognition is used to optimize image-based medical decisions, boost driverless car technology, predict consumer behavior, and create value for many other applications.

Most recently the use of image recognition on satellite imagery has gained significant momentum, mainly due to the fact that satellite imagery is becoming more and more available to the public.

In April 2020, there were 1,646 commercial satellites circling the globe, and it is estimated that by 2028 no less than 990 satellites will be launched into space every year(!). The fact that practically anyone can pinpoint any location on earth and gain its latest satellite imagery has created a surge in demand for image recognition solutions.

Countless sectors are already greatly benefiting from this new reality: agriculture, environmental protection, insurance, maritime, land management, oil & gas, real estate, transportation, utilities, and others.

The latest technology to enhance image recognition abilities is deep learning (DL), a sub-category of ML that refers to an automatic learning technique based on artificial neural networks.

In regard to image recognition, DL is able to automatically learn relevant features from sample images and identify those features in new images.

Typically, the technology’s structure is as follows; Just like with ML, first, the training data is prepared. Then, the preliminary model iterates it multiple times and learns the most important features of the images. Finally, the model is tested using a new data set that it hasn’t seen before.

The most significant difference between the structures of ML and DL is that with ML the unique characteristics must be manually differentiated, and with DL they are automatically learned by the model.

In other words, DL also automates the model’s learning stage, enabling the invention of additional satellite imagery applications that will be able to solve problems in various industries.

To conclude, the increase of satellite capabilities combined with innovative image recognition technologies are bound to impact a variety of industries and the entire human race in the very near future. In regard to 4M Analytics – our company, be sure we are working tirelessly to seize the opportunities awaiting.

Recent blog posts

View all Blogs

Transforming Infrastructure with Advanced Utility Data

Increasing costs on materials and components, rising overheads, compressed timelines, and higher competition for bids—the construction industry has little room for error when it comes to maintaining owner cost-benefit and contractor profitability. Any source of uncertainty must be assessed, quantified, and mitigated to ensure successful outcomes. So why does the number one risk factor for transportation construction projects often go unacknowledged?

Tamar Shafrir

August 21, 2025

Industry Insights

Texas Utility Environmental Risk Report

Underground utility infrastructure plays a critical role in Texas’s environmental and public health efforts. Yet, despite its scale, spanning more than 1.4 million miles statewide, much of this infrastructure remains unmapped or poorly documented. This lack of visibility and incomplete asset management creates challenges for environmental risk management and compliance with evolving regulations. This is especially relevant in the case of utility lines made from high-risk materials that may be prone to failure and corrosion, or harmful to human and ecological health.

August 21, 2025

Industry Insights

Maximizing Underground Design Efficiency Now and in the Future

The United States is embarking on a massive infrastructure build out to support as much as $10 trillion of new investments. Even if just 50% of that total is achieved, that’s still a significant amount of investment.

Mike Beehler

August 21, 2025

Industry Insights

Here's What's New in 4M: July 2025

July turned up the dial on clarity, control, and efficiency—with new tools that give Admins clearer visibility into project usage, expanded detection of on-surface assets like meters and control boxes, and statewide Foundation Data in Illinois to make your day-to-day more efficient, more strategic, and a whole lot less manual.

Chris Garafola

August 4, 2025

Product

Utility AI Mapping vs Traditional Utility Mapping

Remember the days before we all had Google Maps on our phones? We can time-travel back to the days of printing out MapQuest directions, or further back to the 80s when you had to go buy a physical map and chart your course to your destination before you left your driveway.

Chris Garafola

July 7, 2025

AI Innovation

Our Newsletter

Join 7k infrastructure professionals

Get monthly insights on ways to build
smarter, faster and safer with Utility AI.